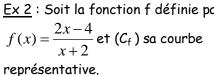
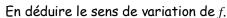
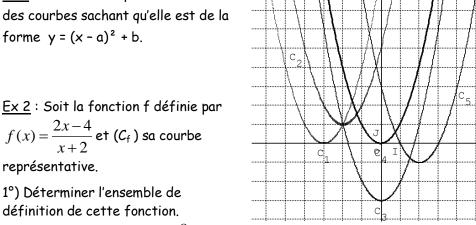
Ex 1 : Retrouver l'équation de chacune des courbes sachant qu'elle est de la forme $y = (x - a)^2 + b$.



- 1°) Déterminer l'ensemble de définition de cette fonction.
- 2°) Vérifier que $f(x) = 2 \frac{8}{x+2}$.



3°) Soit la fonction q définie par g(x) = 2x - 2. On notera (C_0) sa courbe représentative. Etudier la position relative de (C_f) et (C_o) .



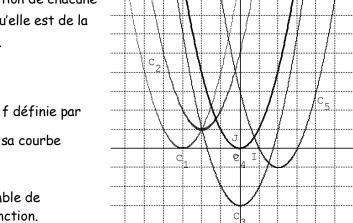
Ex 3 : v est une fonction définie sur l'intervalle[-3 ;2]. Voici son tableau de variation:

х	-3	-1	0	2
v (x)	-2 —	0	5	3

- 1°) Dresser le tableau de variation de $u: x \mapsto 2v(x) 5$.
- 2°) a) Sur quel intervalle I la fonction $f: x \mapsto \sqrt{v(x)}$ est elle définie?
- b) Dresser le tableau de variation de f sur I.
- 3°) a) Sur quel ensemble D , la fonction $g: x \mapsto \frac{1}{v(x)}$ est- elle définie ?
 - b) Dresser le tableau de variation de g sur D.

Ex 1 : Retrouver l'équation de chacune des courbes sachant qu'elle est de la forme $y = (x - a)^2 + b$.

15



- Ex 2 : Soit la fonction f définie par $f(x) = \frac{2x-4}{x+2}$ et (C_f) sa courbe représentative.
- 1°) Déterminer l'ensemble de définition de cette fonction.
- 2°) Vérifier que $f(x) = 2 \frac{8}{x+2}$.

En déduire le sens de variation de f.

3°) Soit la fonction q définie par g(x) = 2x - 2. On notera (C_0) sa courbe représentative. Etudier la position relative de (C_f) et (C_o) .

Ex 3: v est une fonction définie sur l'intervalle[-3;2]. Voici son tableau de variation:

X	-3	-1	0	2
v (x)	-2-	0	5	3

- 1°) Dresser le tableau de variation de $u: x \mapsto 2v(x) 5$.
- 2°) a) Sur quel intervalle I la fonction $f: x \mapsto \sqrt{v(x)}$ est elle définie?
- b) Dresser le tableau de variation de f sur I.
- 3°) a) Sur quel ensemble D , la fonction $g: x \mapsto \frac{1}{v(x)}$ est- elle définie ?
 - b) Dresser le tableau de variation de g sur D.