TS AP: Suites et limites

<u>Ex1</u>: 1°) Soit (U_n) la suite définie par U_n = n² + 6. Utiliser la définition du cours pour démontrer que $\lim_{n\to+\infty}$ U_n = + ∞ .

2°) Soit (U_n) la suite définie par U_n = $\frac{-1}{3n}$. Utiliser la définition du cours pour démontrer que $\lim_{n \to +\infty}$ U_n = 0.

 $\underline{\mathsf{Ex2}}: \mathsf{Calculer} \underset{n \to +\infty}{\mathit{lim}} \mathsf{U_n} \; \mathsf{dans} \; \mathsf{chacun} \; \mathsf{des} \; \mathsf{cas} \; \mathsf{suivants}:$

1°)
$$U_n = \frac{5}{2n^2}$$
 2°) $U_n = n^3 + 2 n^2 + n - 7$ 3°) $U_n = n^3 - 2 n^2 + n - 7$

4°)
$$U_n = 4 + \frac{n^2}{2n+1}$$
 5°) $U_n = \frac{n^2 + n - 5}{n^2 + 3n + 4}$ 6°) $U_n = 3 \text{ n} - \frac{3 + 6n^2}{2n + 1}$

7°)
$$U_n = \sqrt{n^2 + n - 5}$$
 8°) $U_n = \sqrt{n - n - 5}$ 9°) $U_n = \frac{1}{\sqrt{n + 1} - \sqrt{n}}$

10°)
$$U_n = \frac{\sqrt{n+3}}{3n^2+5}$$
 11°) $U_n = \frac{n+3}{3\sqrt{n+5}}$ 12°) $U_n = 4 + \frac{\sin n}{n^2}$

13°)
$$U_n = \frac{2n^2 - 3\cos n}{n^2 + 1}$$
 14°) $U_n = \frac{(-1)^n}{n + 1}$ 15°) $U_n = \left(\frac{1}{2}\right)^n + 3n$

16°)
$$U_n = \left(\frac{1}{2}\right)^n + 3^n$$
 17°) $U_n = \frac{5^n}{8^n}$ 18°) $U_n = \frac{5^{n+3}}{8^n}$ 19°) $U_n = \frac{5^{3n}}{8^n}$

Ex3: Un Vrai-Faux Soit (u_n) une suite réelle positive.

- 1°) Si pour tout n de \mathbb{N} , $u_n \leq n$, alors (u_n) converge.
- 2°) Si pour tout n de $\mathbb N$, $u_n \ge \frac{n}{2}$, alors (u_n) diverge.
- $3^{o})$ Si pour tout n de $\mathbb N$, $u_{n}\geq n,$ alors (u_{n}) est croissante.
- 4°) Si pour tout n de \mathbb{N}^* , $u_n \leq \frac{1}{n}$, alors (u_n) décroissante.
- 5°) Si pour tout n de $\mathbb N$, $n^2 \le n^2 u_n \le n^2 + n$, alors (u_n) converge.

 $\underline{Ex1}:1^{\circ}$) Soit (U_n) la suite définie par U_n = n² + 6. Utiliser la définition du cours pour démontrer que $_{n\rightarrow+\infty}^{lim}$ U_n = + ∞ .

2°) Soit (U_n) la suite définie par U_n = $\frac{-1}{3n}$. Utiliser la définition du cours pour démontrer que $\lim_{n \to +\infty}$ U_n = 0.

 $\underline{\mathsf{Ex2}}: \mathsf{Calculer} \ \lim_{n \to +\infty} \mathsf{U_n} \ \mathsf{dans} \ \mathsf{chacun} \ \mathsf{des} \ \mathsf{cas} \ \mathsf{suivants}:$

1°)
$$U_n = \frac{5}{2n^2}$$
 2°) $U_n = n^3 + 2 n^2 + n - 7$ 3°) $U_n = n^3 - 2 n^2 + n - 7$

4°)
$$U_n = 4 + \frac{n^2}{2n+1}$$
 5°) $U_n = \frac{n^2 + n - 5}{n^2 + 3n + 4}$ 6°) $U_n = 3 \text{ n} - \frac{3 + 6n^2}{2n + 1}$

7°)
$$U_n = \sqrt{n^2 + n - 5}$$
 8°) $U_n = \sqrt{n - n - 5}$ 9°) $U_n = \frac{1}{\sqrt{n + 1} - \sqrt{n}}$

10°)
$$U_n = \frac{\sqrt{n+3}}{3n^2+5}$$
 11°) $U_n = \frac{n+3}{3\sqrt{n+5}}$ 12°) $U_n = 4 + \frac{\sin n}{n^2}$

13°)
$$U_n = \frac{2n^2 - 3\cos n}{n^2 + 1}$$
 14°) $U_n = \frac{(-1)^n}{n+1}$ 15°) $U_n = \left(\frac{1}{2}\right)^n + 3n$

16°)
$$U_n = \left(\frac{1}{2}\right)^n + 3^n$$
 17°) $U_n = \frac{5^n}{8^n}$ 18°) $U_n = \frac{5^{n+3}}{8^n}$ 19°) $U_n = \frac{5^{3n}}{8^n}$

Ex3: Un Vrai-Faux Soit (u_n) une suite réelle positive.

- 1°) Si pour tout n de $\mathbb N$, $u_n \le n$, alors (u_n) converge.
- 2°) Si pour tout n de $\mathbb N$, $u_n \ge \frac{n}{2}$, alors (u_n) diverge.
- 3°) Si pour tout n de $\mathbb N$, $u_n \geq n,$ alors (u_n) est croissante.
- 4°) Si pour tout n de \mathbb{N}^* , $u_n \leq \frac{1}{n}$, alors (u_n) décroissante.
- 5°) Si pour tout n de $\mathbb N$, $\, n^2 \leq n^2 u_n \leq n^2 + n,$ alors (u_n) converge.