AP: Fonctions SIN et COS

Ex1 : Calculer la dérivée des fonctions f:

$$1^{\circ}$$
) f(x) = 4 cos x - 8 sin x - x 2°) f(x) = 5 x cos x 3°

2°)
$$f(x) = 5 x \cos x$$
 3°) $f(x) = (2 \cos x - 5)^3$

4°)
$$f(x) = 2 \sin \left(4 x + \frac{\pi}{3}\right)$$
 5°) $f(x) = \frac{3}{\sin 2x}$ 6°) $f(x) = \frac{3 \cos x - 5}{\sin x + 2}$

5°)
$$f(x) = \frac{3}{\sin 2x}$$

6°) f(x) =
$$\frac{3\cos x - 5}{\sin x + 2}$$

Ex2: Calculer les limites:

1°)
$$\lim_{x\to+\infty} \frac{\cos x}{x}$$

2°)
$$\lim_{x\to 0} \frac{2\sin x}{x} - 4$$

$$1^{\circ}) \lim_{x \to +\infty} \frac{\cos x}{x} \qquad 2^{\circ}) \lim_{x \to 0} \frac{2 \sin x}{x} - 4 \qquad 3^{\circ}) \lim_{x \to +\infty} \frac{x^2 + \cos x}{x - 3}$$

Ex3: 1°) Calculer une primitive des fonctions f:

a)
$$f(x) = 4 \cos x - 8 \sin x - x$$

a)
$$f(x) = 4 \cos x - 8 \sin x - x$$
 b) $f(x) = \sin x \cos^2 x + \sin \frac{\pi}{8}$

c)
$$f(x) = 2 \sin \left(4 x + \frac{\pi}{3}\right)$$
 d) $f(x) = \frac{3 \cos x}{(\sin x + 2)^2}$ e) $f(x) = \sin x e^{\cos x}$

d)
$$f(x) = \frac{3 \cos x}{(\sin x + 2)^2}$$

e)
$$f(x) = \sin x e^{\cos x}$$

2°) Calculer la primitive de la fonction f définie sur \mathbb{R} par $f(x) = \sin 2x$, qui vaut 2 en π .

Ex4: 1°) Etudier la parité des fonctions f:

a)
$$f(x) = 3 \cos x - x^2$$

b)
$$f(x) = 5 x \sin x - 1$$

c)
$$f(x) = 5 x \sin x - x$$

2°) Démontrer que la fonction f est périodique de période T:

a)
$$f(x) = \cos 4x - 5$$
 $T = \frac{\pi}{2}$

a)
$$f(x) = \cos 4x - 5$$
 $T = \frac{\pi}{2}$ b) $f(x) = -3 \sin x + 5 \cos^2 x$ $T = 2\pi$.

Ex5: Etudier le signe sur]-
$$\pi$$
; π] de 1°) sin x - 0,5

1°)
$$\sin x - 0.5$$

2°) 2 cos
$$x + \sqrt{2}$$
.

<u>Ex6</u>: On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{2} \sin^3 x + \frac{1}{2} \sin^2 x$.

- 1°) Démontrer que f est périodique de période 2π .
- 2°) Etudier la parité de f.
- 3°) a) Démontrer que $f'(x) = \sin x \cos x$ ($\sin x + 1$).
- b) En déduire le signe de f'(x) sur $[0; 2\pi]$.
- 4°) Dresser le tableau de variation de f sur $[0; 2\pi]$.

Ex7: On considère la fonction f définie sur \mathbb{R} par $f(x) = \cos 3x + 1$.

- 1°) Etudier la parité de f.
- 2°) Démontrer que f est périodique de période $\frac{2\pi}{3}$.
- 3°) Etudier le sens de variation de f sur $[0; \frac{n}{3}]$.
- 4°) En déduire le tableau de variation de f sur $[-\pi; \pi]$.

Ex1 : Calculer la dérivée des fonctions f:

1°)
$$f(x) = 4 \cos x - 8 \sin x - x$$
 2°) $f(x) = 5 x \cos x$ 3°) $f(x) = (2 \cos x - 5)^3$

4°)
$$f(x) = 2 \sin \left(4 x + \frac{\pi}{3}\right)$$
 5°) $f(x) = \frac{3}{\sin 2x}$ 6°) $f(x) = \frac{3 \cos x - 5}{\sin x + 2}$

5°)
$$f(x) = \frac{3}{\sin 2x}$$

6°)
$$f(x) = \frac{3\cos x - 5}{\sin x + 2}$$

Ex2 : Calculer les limites:

1°)
$$\lim_{x\to+\infty} \frac{\cos x}{x}$$

TS

2°)
$$\lim_{x\to 0} \frac{2\sin x}{x} - 4$$

1°)
$$\lim_{x \to +\infty} \frac{\cos x}{x}$$
 2°) $\lim_{x \to 0} \frac{2 \sin x}{x} - 4$ 3°) $\lim_{x \to +\infty} \frac{x^2 + \cos x}{x - 3}$

Ex3:1°) Calculer une primitive des fonctions f:

a)
$$f(x) = 4 \cos x - 8 \sin x - x$$

a)
$$f(x) = 4 \cos x - 8 \sin x - x$$
 b) $f(x) = \sin x \cos^2 x + \sin \frac{\pi}{8}$

c)
$$f(x) = 2 \sin \left(4 x + \frac{\pi}{3}\right)$$
 d) $f(x) = \frac{3 \cos x}{(\sin x + 2)^2}$ e) $f(x) = \sin x e^{\cos x}$

d)
$$f(x) = \frac{3 \cos x}{(\sin x + 2)^2}$$

e)
$$f(x) = \sin x e^{\cos x}$$

2°) Calculer la primitive de la fonction f définie sur \mathbb{R} par $f(x) = \sin 2x$, qui vaut 2 en π .

Ex4:1°) Etudier la parité des fonctions f:

a)
$$f(x) = 3 \cos x - x^2$$

b)
$$f(x) = 5 x \sin x - 1$$
 c) $f(x) = 5 x \sin x - x$

c)
$$f(x) = 5 x \sin x - x$$

2°) Démontrer que la fonction f est périodique de période T:

a)
$$f(x) = \cos 4x - 5$$
 $T = \frac{\pi}{2}$

a)
$$f(x) = \cos 4x - 5$$
 $T = \frac{\pi}{2}$ b) $f(x) = -3 \sin x + 5 \cos^2 x$ $T = 2\pi$.

$$\underline{\mathsf{Ex5}}$$
: Etudier le signe sur]- π ; π] de

1°)
$$\sin x - 0.5$$

<u>Ex6</u>: On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{2} \sin^3 x + \frac{1}{2} \sin^2 x$.

- 1°) Démontrer que f est périodique de période 2π .
- 2°) Etudier la parité de f.
- 3°) a) Démontrer que $f'(x) = \sin x \cos x (\sin x + 1)$.
- b) En déduire le signe de f'(x) sur $[0; 2\pi]$.
- 4°) Dresser le tableau de variation de f sur $[0; 2\pi]$.

Ex7: On considère la fonction f définie sur \mathbb{R} par $f(x) = \cos 3x + 1$.

- 1°) Etudier la parité de f.
- 2°) Démontrer que f est périodique de période $\frac{2\pi}{3}$.
- 3°) Etudier le sens de variation de f sur $[0; \frac{n}{2}]$.
- 4°) En déduire le tableau de variation de f sur $[-\pi; \pi]$.